The Skeptics Society & Skeptic magazine


Dark Matter and Periodic Mass Extinctions? Not So Fast!

Dec. 15, 2015 by | Comments (24)


The great tragedy of science—the slaying of a beautiful hypothesis by an ugly fact.

—Thomas Henry Huxley

In recent weeks, physicist Lisa Randall has been promoting her new book, Dark Matter and the Dinosaurs. She even spoke about her latest work for the recent meeting of the Skeptic Society Science Salon on November 22. Naturally, any book which talks about such sexy topics as astronomy and dinosaurs is guaranteed to get lots of fawning press coverage, with little or no scrutiny from the scientific community. Nearly all the coverage and reviews of the book I have seen are either by science journalists without the appropriate background, or by astronomers and physicists. They were a bit skeptical about whether there was any strong evidence for her idea that waves of dark matter contributed to mass extinctions on earth, but could not rule it out. To her credit Randall made clear that she is proposing a hypothesis to be further tested, not a fully complete theory for which she is confident is correct. Like the good scientist that she is, Randall emphasizes that she could be wrong.

This is  not a review of the entire book, which is generally well written, and explains the complicated physics of dark matter and other topics is a clear and lively fashion. Unfortunately, the urge to tie her topic to sexy ideas like periodic extinctions and impact model for the end of the dinosaurs got the most press coverage, even if the book itself is more cautious about these topics. Still, it was a mistake to invoke the outdated and debunked ideas like the notion of periodic impacts causing extinctions, which seriously detracts from the credibility of an otherwise solid piece of science writing.

So far as I can tell, no one who actually knows much about geology or paleontology has reviewed or commented on her controversial idea. This is surprising, because there is now more than 35 years of research on the causes of mass extinctions in the geological past, and much of it directly contradicts her model. For one thing, her assertion that the impact at the end of the Cretaceous is the primary cause of the extinction of dinosaurs has been discredited in recent years. At the last two meetings of the Geological Society of America (Vancouver in 2014 and Baltimore in 2015), where over 6000 geologists and paleontologists meet to argue about topics like this, the consensus has now swung to the idea that the massive Deccan eruptions in India and Pakistan were far more important to the end-Cretaceous extinctions. Randall gives a brief discussion of the Deccan eruptions (pp. 202-203), but does not accurately reflect the consensus view of the geological community about their great importance to the end-Cretaceous extinctions. Based on all the recent literature in geology, and the talks given at recent geology meetings, the impact of an extraterrestrial object (whether asteroid, comet, or dark matter) has been considerably reduced in importance. Yet much of the general public is unaware of this changed conclusion in geology. The popular media (and even the science media) still propagate the simplistic notion of the rock from space doing all the damage, without mentioning the other causes that are even better documented, or the complexity of the pattern of extinction and survival.

Artist's conception by NASA artist Don Davis of the impacting asteroid smashing into earth at the end of the Cretaceous. (Courtesy WIkimedia Commons).

Artist’s conception by NASA artist Don Davis of the impacting asteroid smashing into earth at the end of the Cretaceous. (Via Wikimedia Commons).

Even more controversial is her assertion in both the book and the interviews that the dark matter model might be the cause for periodic extinctions in the fossil record. Hearing this statement is as jarring to a geologist or paleontologist as going through a time warp. The periodic extinction model was first proposed in 1984, but has been completely debunked since 1990, and almost no geologist or paleontologist takes it seriously any more (except for the maverick Mike Rampino, who is quoted extensively in the interviews and cited in the book, even though no one else in geology follows him).

The initial idea of periodic extinctions was first published by the late David Raup and Jack Sepkoski in 1984 (Raup and Sepkoski, 1984, 1986; Raup, 1986, 1991). While their paper was still circulating as a preprint, a number of astronomers jumped the gun before the idea had even been published or received proper scientific assessment. These astronomers were quite imaginative in proposing causes for this alleged periodicity. They postulated periodic comet showers (Davis et al., 1984), the oscillation of the solar system through the galactic plane (Rampino and Stothers, 1984; Schwartz and James, 1984), an unknown Planet X (Whitmire and Jackson, 1985), and even an undetected companion star to the sun named Nemesis (Whitmire and Jackson, 1984). Loper and McCartney (1986) and Loper et al. (1988) suggested that there was a 26-million-year periodicity in mantle overturn within the earth, triggering pulses of volcanism and global climate change that then caused extinctions.

Unfortunately for the pro-impact stampede, several ugly little facts killed their beautiful hypotheses. No evidence for Nemesis or Planet X has ever been found. Randall freely admits this on p. 260. So why does she even mention “Nemesis” again, 30 years after it was debunked and vanished from the scientific literature? Nor has any evidence tied comet showers or the motion through the galactic plane to mass extinctions (Shoemaker and Wolfe, 1986; Tremaine, 1986; Sepkoski, 1989). Randall spends the entire Chapter 15 reviewing this topic, and confesses there is no evidence for it.    Similarly, the mantle periodicity model has been discredited. In fact, the very existence of the 26-million-year extinction cycle has been challenged on statistical grounds (Kitchell and Pena, 1984; Kitchell and Easterbrook, 1986; Hoffman and Ghiold, 1986; Harper, 1987; Stigler and Wagner, 1987; Noma and Glass, 1987; Quinn, 1987). Randall (p. 244) admits that the statistical support for the periodicity model is very poor, but why then does it get so much coverage?

Cladistic taxonomists have criticized Sepkoski’s database because it is full of paraphyletic or monotypic taxa that are not real monophyletic groups, as well as bad taxonomy and misidentifications. When echinoid specialist Andrew Smith and paleoichthyologist Colin Patterson examined the database for their taxa of specialization (echinoderms and fishes) and eliminated the mistakes and non-monophyletic groups, the periodicity disappeared (Patterson and Smith, 1987; Smith and Patterson, 1988).

Another problem with the data is the way they are compiled. Since the quality of the data is highly variable, Sepkoski lumped all the data by stages of 3 to 5 million years in duration. This means that all extinctions that happened at different times within a given stage are treated as if they occurred exactly at the end of the stage, even if they were evenly spaced through the duration of the stage. Such a method artificially bunches all the extinctions at stage boundaries and makes a gradual extinction pattern appear catastrophic. Randall (p. 173) discusses the Signor-Lipps effect and how it might make an abrupt extinction appear more gradual, but does not seem to recognize this serious compilation flaw in Sepkoski’s data base from which the entire periodic extinction model arose.

The dating is not very reliable either. The time scales have changed so much in recent years that the 26-million-year prediction can succeed or fail depending upon which time scale is used. For example, Raup and Sepkoski (1984, 1986) predicted a late Eocene extinction peak at 39 Ma, and at the time, the age of the Eocene/Oligocene boundary was disputed, ranging from 36.5 to 32 Ma. Even with time scales in use in 1984, it appeared that their prediction was off. Today, we place the middle/late Eocene extinction at 37.2 Ma, the Eocene/Oligocene boundary (not much of an extinction) at 33.9 Ma, and the earliest Oligocene extinction at 33.0 Ma, so none of these match Raup and Sepkoski’s (1984, 1986) prediction. Randall (p. 233) mentions the Eocene impacts briefly, but does not seem to be aware of the literature that shows NO extinction at the time of this impact (33.5 Ma, in the middle of the late Eocene). This demonstrates that even very large impacts (the Chesapeake and Popigai impacts in the late Eocene were only slightly smaller than Chicxulub impact that came at the end of the Cretaceous) can cause NO extinctions.

The biggest problem with the periodic extinction model, however, is the fact that there is no common cause for the major mass extinctions, which would be required if the same triggering event occurred with a regular pattern. Only the end-Cretaceous extinction is associated with an impact, but this is true of no others (despite all sorts of false alarms over the years). Gigantic mantle eruptions are associated with the end-Permian, end-Triassic, and end-Cretaceous extinctions, but with no others. The late Ordovician and late Devonian extinctions have no clear indication of impact or volcanism, but seem to be due to global cooling. The middle and late Eocene extinctions at 37 Ma and 33 Ma were also apparently due to global cooling, but (as already mentioned) the late Eocene impacts happened BETWEEN the extinction horizons and caused NO extinctions. Randall (p. 179-185) even reviews the evidence for most of these mass extinctions, but there is no discussion how this lack of common cause invalidates the entire periodicity model. Only on p. 243 does she seem to indicate that extraterrestrial impacts are not so important–but then why spend all the time and pages talking about periodic extinctions caused by extraterrestrial events as if they had any validity?

Finally, there is a serious question whether many of the extinction “peaks” are real. The middle Miocene “extinction peak” at 13 million years is based on a few species of molluscs and does not show up in the excellent record of land mammals (Webb, 1977; Barry, 1995; Heissig, 1979). Randall (p. 233) mentions the impact found at this time (Ries Crater in Germany), but not the fact that it caused no mass extinction, even in the land mammals from the immediate vicinity (Heissig, 1979). The early Jurassic peak was barely above background noise levels, and Sepkoski (1989) abandoned the mid-Jurassic extinction peak. Some extinction peaks (the late Triassic, the mid-Jurassic, the early Cretaceous, and Pliocene) fall well outside the predicted time interval (Sepkoski, 1989). If only half of the “peaks” appear to be real and occur on schedule, and there are long gaps with no extinction at the predicted 26-million-year interval, what does this imply about the “periodicity”?

Stanley (1990) suggested a much simpler explanation for this apparent periodicity. Major mass extinctions tend to kill the highly specialized taxa, leaving only extinction-resistant generalists known as “survivor” taxa. In the aftermath, it takes many millions of years for diversity to recover and for a wide variety of extinction-prone specialists to evolve and fill the vacant ecological niches. If some extreme event occurred soon after a major mass extinction, there would be no significant extinctions, because the only organisms alive would be the extinction-resistant “survivor” taxa. Only after 10 to 20 million years does diversity return with specialized taxa that would be vulnerable to a major environmental perturbation. The 26-million-year “periodicity” may simply be a reflection of the time it takes for a fauna to recover before it can feel the effects of the next climate change or major eruption or other event. This would also explain why the “cycles” are not precisely 26 million years, but vary in duration. An astronomically-caused cycle would be much more regular.

Although the periodicity model was very popular and influential in the late 1980s and 1990s, today it is regarded as a historical curiosity that has not withstood the test of further scrutiny by scientists. Randall (p. 233) seems to be aware of this problem, but never fully comes to terms with it. Meanwhile, she succumbs to the temptation to talk about dinosaurs and periodic extinctions which make the topic more glamorous. It is disappointing that such an otherwise well-written book spends so much time on an idea debunked more than 20 years ago.

  • Barry, J. C. 1995. Faunal turnover and diversity in the terrestrial Neogene of Pakistan, pp. 115-134, in Vrba, E. S., G. H. Denton, T. C. Partridge, and L. H. Burckle, eds., Paleoclimate and Evolution, with Emphasis on Human Origins. Yale University Press, New Haven.
  • Davis, M., P. Hut, and R. A. Muller. 1984. Extinction of species by periodic comet showers. Nature 308: 715–717.
  • Harper, C. W., Jr. 1987. Might Occam’s canon explode the Death Star? A moving average model of biotic extinctions. Palaios 2: 600–604.
  • Heissig, K. 1986. No effect of the Ries impact event on the local mammal fauna. Modern Geology 10: 171–179.
  • Hoffman, A., and J. Ghiold. 1986. Randomness in the pattern of ‘mass extinctions’ and ‘waves of originations.’ Geological Magazine 122:1–4.
  • Kitchell, J. A., and D. Pena. 1984. Periodicity of extinctions in the geologic past: Deterministic versus stochastic explanations. Science 226: 689–692.
  • Kitchell, J. A., and G. Estabrook. 1986. Was there a 26-Myr periodicity of extinctions? Nature 321: 534–535.
  • Loper, D. E., and K. McCartney. 1986. Mantle plumes and the periodicity of magnetic field reversals. Geophysical Research Letters 13:1525–1528.
  • Loper, D. E., K. McCartney, and G. Buzyna. 1988. A model of correlated episodicity in magnetic-field reversals, climate, and mass extinctions. Journal of Geology 96:1–15.
  • Noma, E. and A. L. Glass. 1987. Mass extinction pattern: Result of chance. Geological Magazine 124: 319–322.
  • Patterson, C., and A. B. Smith. 1987. Is the periodicity of extinctions a taxonomic artefact? Nature 330: 248–251.
  • Quinn, J. F. 1987. On the statistical detection of cycles in extinctions in the marine fossil record. Paleobiology 13: 456–478.
  • Rampino, M. R. and R. B. Stothers. 1984. Terrestrial mass extinctions, cometary impacts, and the Sun’s motion perpendicular to the galactic plane. Nature 308:709–712.
  • Raup, D. M. 1986. The Nemesis Affair: A story of the Death of Dinosaurs and the Ways of Science. Norton, New York.
  • Raup, D. M. 1991. Extinction: Bad Genes or Bad Luck? Norton, New York.
  • Raup, D.M., and J. J. Sepkoski, Jr. 1984. Periodicity of extinctions in the geologic past. Proceedings of the National Academy of Sciences 81:801-805.
  • Raup, D.M., and J. J. Sepkoski, Jr. 1986. Periodicity of extinctions of families and genera. Science 231:833-836.
  • Schwartz, R. D., and P. B. James. 1984. Periodic mass extinctions and the Sun’s oscillation around the galactic plane. Nature 308: 712–713.
  • Sepkoski, J. J., Jr. 1989. Periodicity in extinction and the problem of catastrophism in the history of life. Journal of the Geological Society of London 146:7-19.
  • Shoemaker, E. M., and R. F. Wolfe. 1986. Mass extinctions, crater ages, and comet showers, pp. 338–386, in Smoluchowski, R. S., J. N. Bahcall, and M. S. Matthews, eds., The Galaxy and the Solar System. University of Arizona Press, Tucson.
  • Smith, A. B., and C. Patterson. 1988. The influence of taxonomic method on the perceptions of patterns of evolution. Evolutionary Biology 23: 127–216.
  • Stanley, S. M. 1990. Delayed recovery and the spacing of major extinctions. Paleobiology 16:401-414.
  • Stigler, S. M., and M. J. Wagner. 1987. A substantial bias in nonparametric tests for periodicity in geophysical data. Science 238:940–945.
  • Tremaine, S. D. 1986. Is there evidence of a solar companion star? pp. 409–416, in Smoluchowski, R. S., J. N. Bahcall, and M. S. Matthews, eds., The Galaxy and the Solar System. University of Arizona Press, Tucson.
  • Webb, S. D. 1977. A history of savanna vertebrates in the New World. Part I: North America. Annual Reviews of Ecology and Systematics 8:355–380.
  • Whitmire, D. P., and A. A. Jackson IV. 1984. Are periodic mass extinctions driven by a distant solar companion? Nature 308: 713–715.
  • Whitmire, D. P,. and A. A. Jackson IV. 1985. Periodic comet showers and Planet X. Nature 313: 36–38.
Donald Prothero

Dr. Donald Prothero taught college geology and paleontology for 35 years, at Caltech, Columbia, and Occidental, Knox, Vassar, Glendale, Mt. San Antonio, and Pierce Colleges. He earned his B.A. in geology and biology (highest honors, Phi Beta Kappa, College Award) from University of California Riverside in 1976, and his M.A. (1978), M.Phil. (1979), and Ph.D. (1982) in geological sciences from Columbia University. He is the author of over 35 books. Read Donald’s full bio or his other posts on this blog.

Inline Feedbacks
View all comments
December 28, 2015 4:59 pm

Don has no references on periodic impacts and mass extinction less than 25 years old. He doesn’t know the literature of the last quarter Century on the impact extinction problem. Lots of papers have been published in hat time.

December 28, 2015 1:19 pm

Keeping Saturn in Saturnalia

A (Very) Short History of Christmas

Mike Rampino
December 28, 2015 10:32 am


Most of what you have to say has been taken up in my two recent papers in Monthly Notices of the Royal Astronomical Society. No one in the impact field that I know favors the Deccan volcanism over the Chicxulub impact for the K-Pg extinction. Just one group, led by Gerta Keller is trying to sink the impact idea by publishing voluminous papers that propose that the Chicxulub impact took place, but not at the K-Pg boundary, and that it had nothing to do with the mass extinction. This ignores all the work that has been done by groups all over the world that show that the impact event and the mass extinction are cause-and-effect related

There is now good evidence that the 6 largest craters of the past 260 Myr coincide with stratigraphic evidence of impacts, not just the the K-Pg event. And 5 of those 6 large craters coincide with recognized extinction events. If you look back at the literature, there are about the same number of articles pro the periodic extinction model as there were against it. My new results with Ken Caldeira show that both impacts and extinctions share a 26 Myr cycle, and both have the same phase. It should be noted that Raup and Sepkoski effectively refuted the models proposed by Stanley, and Stigler and Wagner to explain the periodicity. The problem is most paleontologists don’t keep up with the impact literature.

Bad Boy Scientist
December 23, 2015 10:19 am

Dr Prothero, what is you opinion whether the inclusion (emphasis) of the connection to periodic mass extinctions was foisted upon Dr Randall by a publisher more interested in sales than publishing a well-written popular science book? The whole dinosaur connection may be a deal with the devil – if you want to tell the public what we know about dark matter you’ll have to spin tales about dinosaurs.

She is an astronomer working in dark matter and those parts of the book are well written, you say, but the parts involving paleontology are much weaker (which is not surprising).

Mike klymkowsky
December 23, 2015 6:56 am

A classic case of biology-envy (by a non-biologist) and the need for new a new spin, the (dark) conspiracy model, by a writer.

Jerrold Alpern
December 23, 2015 4:04 am

What about the paper, The Extinction of the Dinosaurs, by Stephen Brusatte, et. al. in the July, 2014 Biological Reviews, ? Although it has nothing to do with periodicity, it argues for the key role of the asteroid in the end Cretaceous extinction.

December 23, 2015 9:10 pm
Reply to  Jerrold Alpern

That occurred to me, too, but I read it in the latest Scientific American. Nowhere in that article are the Deccan Traps mentioned. Instead he and his colleagues say that the Chicxulub impact was indeed the main culprit but that the earth’s ecosystems were already weakened possibly by changes in sea levels. Dr. Prothero if you’re still tracking this thread it’d be interesting to get your take on Brusatte’s paper?

December 23, 2015 2:21 am

– all wrong! The true cause is steam from Russel’s teapot (overheated from warming globals)
After all a true periodicity does not have a leeway of several million years (as several of the mass extinctions prior to C/T have). Nevertheless, falsified theories can fertilize better ones (Popper variation).

John Kwok
December 18, 2015 1:05 pm

I wouldn’t be so dismissive of the “Chicago” school of paleobiology, not least because it was Jack Sepkoski’s early work that led to recognizing the existence of all five major mass extinctions in the Phanerozoic Eon, in which he relied partly on the pioneering work of ecologists Robert MacArthur and E. O. Wilson with regards to their theory of island biogeography. The same is true for the asteroid/comet impact theory for the Cretaceous-Paleogene boundary mass extinction, since current research is confirming it as I noted in my link to that report about the paper published in the last few weeks regarding how the impact created a lethal algal bloom.

John Kwok
December 18, 2015 10:10 pm


Can you point to an interval when the Deccan Traps fissure eruptions were able to put out enough molten material that would lead to a “nuclear winter” scenario that would kill off the nonavian dinosaurs and much of the marine biota? I think the case for the Alvarez et al theory has been substantially well supported, and is being supported further with recent publications like the one I’ve cited. There are notable marine invertebrate paleontologists like Neil Landman of AMNH who accept the work of Alvarez et al. and Boynton et al. as the valid, well established science that it is. (Though I am well aware that Neil and his team may have found a relict Cretaceous ammonite fauna persisting for as long as several thousand years into the basal Paleogene.)

I think we are going to have to agree to disagree respectfully here, Don.

John Kwok
December 18, 2015 10:34 pm
Reply to  John Kwok


I will also confess that like you, I strongly opposed the work of Alvarez et al. until I read some of the papers by Boynton et al. I thought Alan Hildebrand was nuts claiming he had substantial geological data pointing to the existence of the Chicxulub crater and told him that when we were in graduate school at the University of Arizona. I felt compelled to accept their research once I began reading their peer-reviewed published results.



John Kwok
December 18, 2015 10:45 am

Hi Don,

I think yours could be fair criticisms of Lisa Randall’s book, but bear in mind that she consulted with Michael Foote – now at the University of Chicago, but who was an undergraduate student of Stephen Jay Gould’s at Harvard University – and her Harvard University colleague Andrew Knoll, among others. (I think they also read preliminary drafts). While I don’t have my copy of her book in front of me, she does cite more, recent work done in the last two decades that supports the Alvarez et al. hypothesis and also shows some support for quasi-periodicity in mass extinctions.

I should point out to those who may be unfamiliar with this recent report of a study published that looks at the effect of the impact on marine microbiota:

Sincerely yours,


Adrian Morgan
December 17, 2015 4:16 pm

I’m not in a position to add an informed comment on the topic, but readers might like to know that Rampino was interviewed on a recent episode of Big Picture Science (or if you want to jump straight to the interview and perhaps leave a comment).

Loren Petrich
December 17, 2015 3:42 pm

I’ve seen a multi-impact hypothesis for the K/T or K/Pg mass extinction. One impact caused the Deccan Traps eruptions, while the other impact excavated the Chicxulub crater. This seeming coincidence would be the result of the Earth hitting a binary asteroid, first one then the other.

John H
December 17, 2015 12:29 pm


Is your opinion of the worth of the rest of the book based on your expertise in exotic physics? Hard to resist the temptation, isn’t it?

December 17, 2015 11:19 am

It’s been a while since I’ve done any reading about this, but I had the impression that it was Richard Muller who came up with the Nemesis hypothesis. He was a protegee of Luis Alvarez who, along with his geologist son Walter, discovered the iridium layer left by the impact. Luis Alvarez had a chapter about it in his autobiography and Walter Alvarez wrote a book entitled, “T-rex and the Crater of Doom”.

December 17, 2015 11:07 am

The extinction at the end of the Cretaceous, the Chicxulub impact and the massive Deccan eruptions all happening at the same time seems like quite a coincidence. Could the impact have caused the eruptions?

December 17, 2015 11:29 am

Perhaps the impact could have enhanced the eruptions.

Get eSkeptic

Be in the know.

eSkeptic delivers great articles, videos, podcasts, reviews, event announcements, and more to your inbox.

Sign me up!

Donate to Skeptic

Please support the work of the Skeptics Society. Make the world a more rational place and help us defend the role of science in society.

Detecting Baloney

Baloney Detection Kit Sandwich (Infographic) by Deanna and Skylar (High Tech High Media Arts, San Diego, CA)

The Baloney Detection Kit Sandwich (Infographic)

For a class project, a pair of 11th grade physics students created the infographic shown below, inspired by Michael Shermer’s Baloney Detection Kit: a 16-page booklet designed to hone your critical thinking skills.

FREE PDF Download

Wisdom of Harriet Hall

Top 10 Things to Know About Alternative Medicine

Harriet Hall M.D. discusses: alternative versus conventional medicine, flu fear mongering, chiropractic, vaccines and autism, placebo effect, diet, homeopathy, acupuncture, “natural remedies,” and detoxification.

FREE Video Series

Science Based Medicine vs. Alternative Medicine

Science Based Medicine vs. Alternative Medicine

Understanding the difference could save your life! In this superb 10-part video lecture series, Harriet Hall M.D., contrasts science-based medicine with so-called “complementary and alternative” methods.

FREE PDF Download

Top 10 Myths of Terrorism

Is Terrorism an Existential Threat?

This free booklet reveals 10 myths that explain why terrorism is not a threat to our way of life or our survival.

FREE PDF Download

The Top 10 Weirdest Things

The Top Ten Strangest Beliefs

Michael Shermer has compiled a list of the top 10 strangest beliefs that he has encountered in his quarter century as a professional skeptic.

FREE PDF Download

Reality Check: How Science Deniers Threaten Our Future (paperback cover)

Who believes them? Why? How can you tell if they’re true?

What is a conspiracy theory, why do people believe in them, and can you tell the difference between a true conspiracy and a false one?

FREE PDF Download

The Science Behind Why People See Ghosts

The Science Behind Why People See Ghosts

Mind altering experiences are one of the foundations of widespread belief in the paranormal. But as skeptics are well aware, accepting them as reality can be dangerous…

FREE PDF Download

Top 10 Myths About Evolution

Top 10 Myths About Evolution (and how we know it really happened)

If humans came from apes, why aren’t apes evolving into humans? Find out in this pamphlet!

FREE PDF Download

Learn to be a Psychic in 10 Easy Lessons

Learn to do Psychic “Cold Reading” in 10
Easy Lessons

Psychic readings and fortunetelling are an ancient art — a combination of acting and psychological manipulation.

FREE PDF Download

The Yeti or Abominable Snowman

5 Cryptid Cards

Download and print 5 Cryptid Cards created by Junior Skeptic Editor Daniel Loxton. Creatures include: The Yeti, Griffin, Sasquatch/Bigfoot, Loch Ness Monster, and the Cadborosaurus.

Copyright © 1992–2020. All rights reserved. | P.O. Box 338 | Altadena, CA, 91001 | 1-626-794-3119. The Skeptics Society is a non-profit, member-supported 501(c)(3) organization (ID # 95-4550781) whose mission is to promote science & reason. Privacy Policy.